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A NEW APPROACH TO THE ASYMPTOTIC INTEGRATION OF THE EQUATIONS OF 
SHALLOW CONVEX SHELL THEORY IN THE POST-CRITICAL STAGE* 

A.YU. EVKIN 

A method is proposed for the asymptotic integration of the non-linear 
equations of shallow elastic shell theory on the basis of a new definition 
of the small parameter that is selected to be proportional to the ratio 
between the shell thickness and the amplitude of its deflection. This 
parameter is actually small if the shell is in the post-critical stage, 
i.e., its deflections are large. An asymptotic expansion of the solution 
of the shell equilibrium equations in the parameter mentioned is carried 
out. It is established that the first two approximations result in the 
geometric theory of shell stability formulated by Pogorelov /l/. By 
comparing the asymptotic and numerical solutions /2f found for a spherical 
shell under axisymmetric deformation, satisfactory accuracy of the 
proposed method is obtained for fairly large deflection. The well-known 
Koiter approach is used in the small-deflection domain. The two asymptotic 
expansions, one of which is suitable for small deflections and the other 
for large, are merged using the Pad; approximation. 

Despite the efficiency of the well-known asymptotic method c/3-5/, etc.1 in non-linear 
shell theory, the singularities of the non-linear equations describing the behaviour of the 
shell for deflections substantially exceeding its thickness are. not used therein. The signifi- 
cant post,-criticalshelldeformations are described well in a number of cases by the Pogorelov 
/l/ geometric theory which is, however, phenomenological in nature. The investigations in 
/3-7/ are devoted to proving the geometrical method. The paper by Lesnichaya /7/ should be 
noted, in which the ratio between the shell thickness and the characteristic dimension of the 
domain of the post-critical dents is utilized as the small parameter in a study of the axisym- 
metric deformation of a closed sphere under uniform external pressure. Relationships of the 
geometrical theory are obtained as the fundamental approximation. However, the connection 

*Prikl.Matem.Mekhan.,53,1,115-120,1989 

- 



93 

between the parameters of the post-critical equilibrium mode and the magnitude of the load has 
not been established. 

The distinguishing feature of the approach proposed below is the conversion of the system 
of resolving equations of shallow shell theory by the introduction of new variables that are 
disclosed in the examination of the bending of the original middle surface with violation of 
the regularity along lines. These lines, as well as those orthogonal to them, are taken as 
coordinate lines. Consequently, a new small parameter is discovered that directly character- 
ises the non-linearity of the system. 

1. Within the framework of shallow shell theory the post-critical axisymmetric defor- 
mation of a closed sphere is examined under a uniform external pressure g. The initial 

resolving equations have the form 

(1.1) 

-$(V+-+?&+&(-$)a], D=Eha 12(1-v') 

where @ is the stress function, R is the sphere radius, and E and Y are the elastic modulus 

and Poisson's ratio of the material. System (1.1) allows of two obvious solutions. The 

first 
W = con&, d0ldr = -qrRl(2h) 

corresponds to the initial membrane state of the shell. The second describes isometric 
transformation of the sphere obtained by the specular reflection of a seqment with respect to 
the plane of its 

Introducing 

corresponding to 

base /l/, and has the form 

w = w" (1 - rV(WOR)) 

the change of variables 

2 = rZI(W"R), w = w/w 

relationship (l-2), we arrive at the equations 

(1.2) 

(1.3) 

qO=-&, q* =1/&y*) (a) 
A feature of the systemobtained is the presence of the parameter e that decreases as 

the deflection amplitude W” increases and becomes small for substantially post-critical con- 

figurations. The limit system of equations (for e = 0) has two solutions. The first 
corresponds to the original membrane state of the shell and the second to an isometric trans- 
formation of the middle surface that has the following very simple form in the new variable: 

w=l-z (1.4) 
The composite solution for z = 1 undergoes a discontinuity which is compensated by 

interior boundary layer functions. Consequently, in conformity with /8/, taking account of 
the first approximations,theasymptotic expansion of the solution of the system (1.3) as 
&-+O is sought in the form 

w = E*w~_,, cp = en(pll_l, q" = q0 + enq,, (n = 1, 2, 3, 4) 

ewi = Wi (2) + et+ (t), ecpt = ai (z) + euf (t), t = (1 - z)/e 
(1.5) 

where vi and ui are functions describing the internal edge effect, 
corresponding to the fundamental state. 

and Wt and @'l are functions 
It can be determined that 

z<l (k=0,1,2,3) 

(1.6) 

It is convenient to represent the components of the solutions Wk and ok in the form of 

functions which depend on the variable t. For instance, for z<l we have W. = 1 -z = et. 
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Then the Wi and vi in (1.5) can be considered to be functions of the variable t which are 
continuous together with their derivatives and, in conformity with relationships (1.6), should 
satisfy the following boundary conditions 

Wk' = 0, (Ph-' = qh_, t&-W; u,‘=l, ’ Wk+l = 0, (Pk‘ = - qk, t++32 (1.7) 

Taking account of the expansion (1.5) after the asymptotic analysis of (1.3), we obtain 

the following equations: 
in the fundamental approximation 

w0 
11, 

- 'PO (1 - 2w,‘) + 4” = 0 

‘poU’ 7 Ulo’ (1 - &‘) z 0 

(1.8) 

(1.9) 
in the second approximation 

Wl ‘II - (two’)‘” + 2w,‘(p,’ - ‘PI’ (1 - 2w,‘) + q1 = 0 (1.10) 

‘p1” - 2cp,” - kp,” + WI’ (1 - 2w,‘) -~= 0 (1.11) 

in the third approximation 

W2 I - (tq’)” + 2w,‘(p,’ - ‘pz’ (1 - 2w,‘) + 2cp,‘w,’ + q, = 
0 

92 
,,f - 2cp,” - &I,‘” _r wz’ (1 - Zw,‘) - w~‘2 = 0 

(1.12) 

(1.13) 

In combination with the boundary conditions (1.7) the equations presented can obviously 

be used to determine the functions lui and vi for any given values of qi. The equations are 

linear in the second and subsequent approximations. However, the coefficients themselves 

of the load expansion in a series in the parameter E remain undetermined. The reason for 

this indeterminacy becomes clear if we return to the appropriate variational formulation of 
the problem. 

Let us examine the functional of the total shell potential energy, which, after asymp- 

totic analysis in conformity with expansions (1.5), acquires the form 

u = D, [JOE + J,E' + J,E" - q" (1 + 2s" 1 u,dt + 295’ wIdt) + 

0 (?)I 

J, : [ (c&Q + U’gnZ ) dt, J, = 3 [ [cp”” (‘F1” - tcp,“) 4 

wol (W,” - two”)1 dt 

(1.14) 

(1.15) 

Here and everywhere later the integration is between the limits --oo and +m. 
Taking account of the representation of 9' in the form of the series (1.5), we obtain 

U = D, r-q,, + e (i o - ql) + E’ (iI - q2) + 9 (i, - q3) + 
0 (.+)I 

(1.16) 

I, = J,, i, = J, - 2q, u,dt, s I, = J, - 2q,l v,dt - 2q, 5 w,dt 

It can be shown that the variation of the total potential energy functional (1.14) in 

the functions Wi and cp*, taking the constraints (1.9), (1.11) and (1.13) and the boundary 

conditions (1.7) into account in each approximation as the Euler equations, yields the 

appropriate equilibrium Eqs.(1.6), (1.10) and (1.12). For example, considering the problem 

of the minimum of the functional I, in the presence of the constraints (1.9), (1.11) and 
(1.13) during its variation in the functions UJ~ and 'p,, we arrive at relationship (l.lO), 

while varying the functional I, in the functions w0 and 'p,, we obtain (1.12). However, the 

parameter E remains the same here, but should also be considered and variational, since it 

is related to the amplitude of the post-critical configuration deflection. Varying (1.14) 

in e we obtain the relationships 
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where Ji should be understood to be the minimum value of these functionals. Relationships 

(1.7)-(1.13) possess symmetry which enable us to conclude that the functions qO', (Pi', ZQ' are 

even while 'pr', w,,', w2' are odd. It hence follows that J, = 0 since the appropriate inte- 

grand is odd. Then qa = 0. It can be established that 94 = 0. 
The components containing w2" and rp," in (1.15) can be integrated. Then taking account 

of (1.7) we obtain 
J, = 5 [(p;” + t%pd’Z - 4tw,“w,” + t’w;z + &’ (Q;’ - (1.17) 

w;y dt 

Hence it follows that to determine q1 it is necessary to integrate (1.8) and (1.9) in 

the fundamental approximation. The coefficient q3 will also be determined by the functions 

lu,and 'pr of the second approximation. 

For an appropriate change of variables the functional J, reduces to the Pogorelov func- 

tional, whose minimum is J,= 2J,*1.12. Solving the problem of the minimum of the functional 

J, by using the Ritz method, we obtain approximately J, = -0.4. Finally, we arrive at the 

relationship (for Y = 0.3) 

Q' = 0.42~ + 0.26e3 + 0 (s") (1.18) 

Apart from the factor (1 -vy2)lih the first component yields the well-known result in /l/. 

Therefore, it is established that the relationships of the geometric theory are asymptotically 

exact for E+@ taking the first two approximations into account. 

The result obtained is represented in the form of graphs in the figure. Curve 1 corre- 
sponds to the exact solution obtained numerically /2/. Curve 2 is obtained taking the 
fundamental approximation into account, which corresponds to the geometric theory. Formula 
(1.18) is represented by curve 3 in the graph. It follows from a comparison of curves 1 and 

q” = 1 + awe + 0 (UP) (l.,l9) 

where a=0 for the axisymmetric deformation ofashallow 

sphere under external pressure. Since a.quantityreciprocal 

to E is considered as the small parameter here, expression 

(1.19) yields the first terms of the seriesintheexpansion 

of the function Q0 (a) in powers of l/e 
We merge the asymptotic expansions (1.18) and (1.19) 

by using Pad& two-point approximations /9/. For this q”(&) 
is sought in the form of a rational-fraction function whose coefficients are determined from 

the condition for the expansions of this function to agree, as E-+0 and e-+ 00, with the 

expansions (1.18) and (1.19), respectively. We finally obtain the dependence 

3 that there is good agreement between the data for h/W”< 
i. AS ~V-tO the asymptotic approach under consideration 

yields a qualitatively false result. However, in this 

domain we apply the fairly well-developed Koiter approach, 

by means of which we obtain the following asymptotic 

formula by using the perturbation method for small 

deflections 

q” (F) = .4 @)/(I + A (4) (1.20) 

A (a) = 0.42~ + 0.176~" + 0.333~~ + 0.4~~ 

to which the dashed line in the figure corresponds. Comparison with the data in /2/ (curve 
1) indicates sufficient accuracy for the solution obtained. 

2. The results presented can be extended to the case of strictly convex shallow shells 

with principal radii of curvature R, and R,. We will limit ourselves to a more detailed 
examination of the fundamental approximation. The strain compatibility equation has the form 

E-'vJ@ = W,,$ - WaaWfiP - W,,IR1 - IY,,I;/R, (2.1) 
The function 

W = W" (1 - a2/(WoRI) - P’/(W”R,)) (2.2) 

vanishes on the right-hand side of this equation anddescribes an isometric transformation of 

the specular reflection of the initial middle surface relative to a certain plane. We obtain 
a piecewise-smooth surface with regularity violated along lines in the plane under con- 
sideration. We take these lines as well as those orthogonal to them as the coordinate lines, 

which corresponds to the following change of variables 

(2.3) 
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Going over to dimensionless quantities w and cp we establish the presence of a small 

parameter in the initial relationships 

c* (RI + R2P 

e2 = v/12 (I- +) R,R& ’ 

c = 1 + f: Rz - RI 

‘1 R?+RI ’ &>RR, 

which coincides with that obtained for the spherical shell for R, = Ii, = R. After an 
asymptotic analysis of the total shell potential energy functional, we obtain 

U = D, (Joe - q”) (2.5) 

The function J, agrees in accuracy with that presented for a spherical shell. However, 

the need for the requirement C%l for t, = 1 and 1 t, I< 1 is here established in a 

natural manner, which imposes an additional constraint on the relationships obtained in the 

form 
sl = (R, - &)I(& + R,) < I (2.6) 

A numerical analysis shows that in practice it is sufficient to limit ourselves to the 

requirement 2R,,< R,. Under these conditions we obtain the formula 

q” = 0.42e + 0 (e3) -I- 0 (el) 

which corresponds to the result obtained in /l/. when constructing the solution in higher 

approximation we arrive at relationship (1.18). Using the procedure described to merge the 

solutions of large and small relative deflections, we obtain (1.20) in this case, in which 

The simple relationships presented indicate the efficiency of the approach proposed. 

The author is grateful to I.V. Andrianov for proposing the use of the Padg two-point 

approximation method to merge the limit expansions. 
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